Exercise 1.5.10

Determine the equilibrium temperature distribution inside a circle $\left(r \leq r_{0}\right)$ if the boundary is fixed at temperature T_{0}.

Solution

The governing equation for the temperature in a circle, assuming radial symmetry, is

$$
\frac{\partial u}{\partial t}=\frac{k}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right) .
$$

At equilibrium the temperature does not change in time, so $\partial u / \partial t$ vanishes. u is only a function of r now.

$$
0=\frac{k}{r} \frac{d}{d r}\left(r \frac{d u}{d r}\right) \quad \rightarrow \quad \frac{1}{r} \frac{d}{d r}\left(r \frac{d u}{d r}\right)=0
$$

To solve the differential equation, multiply both sides by r.

$$
\frac{d}{d r}\left(r \frac{d u}{d r}\right)=0
$$

Integrate both sides with respect to r.

$$
r \frac{d u}{d r}=C_{1}
$$

Divide both sides by r.

$$
\frac{d u}{d r}=\frac{C_{1}}{r}
$$

Integrate both sides with respect to r once more.

$$
u(r)=C_{1} \ln r+C_{2}
$$

In order for the temperature of the circle to remain finite as $r \rightarrow 0$, we require that $C_{1}=0$.

$$
u(r)=C_{2}
$$

Apply the boundary condition here to determine C_{2} : At $r=r_{0}$ the temperature is T_{0}.

$$
u\left(r_{0}\right)=C_{2}=T_{0}
$$

Therefore, the equilibrium temperature distribution is unsurprisingly

$$
u(r)=T_{0} .
$$

